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ABSTRACT

In this paper we give a simple proof of Collin’s theorem concerning free
subgroups of C(4), T(4) groups. Our proof actually shows that a slender T(4)
presentation {Xi, X, ..., X, ; ) has a free subgroup of rank 2 provided there is a
subset {a, b, ¢} of {x(, xz,..., x.} with the property that any non-empty freely
reduced word in a, b, ¢ equal to 1 in G has a subword of length 2 contained in
an element of r*.

§1. Introduction

Collins [1] investigated the free subgroup of groups with presentations
satisfying the C(4), T(4) conditions (see also Johnson [3]). He has shown that
such a group G contains a free subgroup of rank two, except in some cases,
which he lists explicitly. The exceptions are all two generator groups.

In [2] the T(4) condition was investigated graphically. Here we give a simple
proof, in the spirit of [2], that if G is a C(4), T(4)-group which can be generated
by three or more elements, then G contains a free subgroup of rank 2. In fact,
we prove a slightly stronger result which will be stated explicitly later.

We will say that a presentation (x;r) is slender if each element of r is
non-empty and cyclically reduced, and if for each R € r, no cyclic permutation of
R or R™', except R itself, belongs to r. We denote by r* the set of all cyclic
permutations of elements of r and their inverses. A word W is called a piece
(relative to r) if there are distinct elements wu, wo of r*. The presentation
satisfies C(p) (p a positive integer) if no element of r* is the product of less than
p pieces. The star graph of the presentation (x;r) has vertex set x U x ', and
{x°,y°} (x,yEx,|e|=|8|=1is an edge if and only if y °x* is a subword of
some element of r*. The presentation satisfies T(4) if and only if its star graph
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has no triangles (see [2] for details). Two slender presentations {(x,, x2,..., X, ; r),
(X1, Xx5,...,%,;s) are said to be equivalent if there is a permutation a of
{1,2,..., n} such that 8(r)* = s* where 0 is the automorphism of the free group
on x,, X, ..., X, defined by x; = x,,,.

THEOREM. Let (X, Xs,..., X, ;r) (n = 3) be a slender C(4), T(4) presentation
not equivalent to a presentation (x,, X, ..., %, ; x,Q,, X0, ..., x,.,0,_., 5) where
s Cr and where each element of {Q,, Q-,...,Q,.-}Us involves only x,_, x,.
Then the group defined by the presentation has a free subgroup of rank 2.

ReMark. Our proof actually shows that a slender T(4) presentation
(Xy, X, ..., X, ; r) has a free subgroup of rank 2 provided there is a subset {a, b, ¢}
of {x,, x,,..., x,.} with the property that any non-empty freely reduced word in q,
b, ¢ equal to 1 in G has a subword of length 2 contained in an element of r*. It
will be seen (§2) that a presentation satisfying the hypotheses of our theorem has
such a subset.

§2. Preliminaries

Let (xi, x»,...,x, ;r) be a slender presentation satisfying the assumptions of
the theorem. We want to show that there is a 3-element subset {a, b, c} of
{x1, X3, ...,x,} with the property:

Any non-empty freely reduced word in a, b, c equalto 1 in G
W) has a subword of length 2 contained in an element of r*.

LeMMA. A 3-element subset {a, b, c} of {xi,Xa,....x.} satisfies (T) except
possibly if there is an element R € r where one of a, b, ¢ occurs exactly once in R
and in no other relator.

PrOOF. Suppose there is a non-empty freely reduced word W in a, b, ¢ equal
to 1 in G but which does not have a subword of length 2 contained in r*. Let M
be a reduced Van Kampen diagram with boundary label W. By standard small
cancellation theory (see [4] chapter V) M has a boundary region A (labelled by R
say) such that A has at most two interior edges, dA N dM is a consecutive part of
M, the label u on AN dM is a subword of W. By assumption u has length 1.
Since the label on the interior edges of A are pieces, the C(4) condition implies
that u is not a piece. Thus u cannot occur in any relator except R. Also it occurs
once in R because it cannot be part of a label of an interior edge of A.

Now suppose {x,, x,, x5} does not satisfy (). Then by the Lemma we can
assume (relabelling if necessary) that x, occurs once in some relator R, and in no
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other relator. Some cyclic permutation of Ry will then have the form x,Q, where
x, does not occur in Q,. Now consider {x,, x3, x4}, and so on. If we do not
eventually find a subset satisfying (1) then we will have that (x,, x»,...,x, ;1) is
equivalent to a presentation

(X0, X2y ooy % 3 Q4 X205, -1, X2 Qnssy 8)

where s Cr and the elements of {Q,, Q,,..., 0,2} Us involve only x,_,, x,
which contradicts the assumption.

§3. Proof of the Theorem

Let {a, b, ¢} be a subset of {x;, x,,..., x,} satisfying () and consider the full
subgraph I'(a, b, ¢) with the star graph of the presentation (xi, X2,..., X, ;r) on
the vertices a, a ', b, b, ¢, ¢~'. Let €1, be the subgroup of the symmetric group
on {a,bc,a”',b”',c'} generated by the elements (xy)(x 'y '), (xx7")
(x,y €{a, b, c}). Then it is shown in [2] that, up to permutating the vertices by an
element of (), ['(a, b, ¢) is a subgraph of one of the following:

a a’ a b
a i
b bfl a~| b 1 ¢ L-I
¢ ¢’
c ¢! bt
Fig. 1. Fig. 2. Fig. 3.

Fig. 4. Fig. 5. Fig. 6. Fig. 7.
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It therefore suffices to assume that I'(a, b, ¢) is a subgraph of one of the above.

Note that a word xy of length 2 (x,y €{a,a", b, b, ¢, c"'}) is a subword of an
element of r* if and only if {x', y} is an edge of I'(a, b, ¢).

Suppose I'(a, b, ¢) is a subgraph of the first graph. Then none of the words
¢'b, b7'a, ¢c'a, ba”', ca”!, cb™' occurs as a subword of an element of r*. It
follows that a~'b, a "¢ freely generate a subgroup of the group G defined by the
presentation, for no non-empty freely reduced word in a 'b, a 'c has (after
freely reducing in terms of a, b, ¢) a subword of length 2 contained in an element
of r*. For the remaining cases similar arguments apply. For each case we list in
Table 1 two words u, v in a, b, ¢, and we leave it to the reader to verify that if
W(u, v) is a non-empty freely reduced word in u, v, then after freely reducing
W(u, v) in terms of a, b, ¢, we obtain a non-empty word with no subword of
length 2 contained in an element of r*.

TaABLE 1
Fig. u v
2 cbe™ a
3 bab™' a
4 che™! b
5 ab”'cba™' cbe™
6 che™ aba™'
7 aba™ cbe™
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