FREE SUBGROUPS OF SMALL CANCELLATION GROUPS

ΒY

MOHAMED S. EL-MOSALAMY Department of Mathematics, Glasgow University, Glasgow G12 8QW, Scotland, U.K.

ABSTRACT

In this paper we give a simple proof of Collin's theorem concerning free subgroups of C(4), T(4) groups. Our proof actually shows that a slender T(4) presentation $\langle x_1, x_2, \ldots, x_n; r \rangle$ has a free subgroup of rank 2 provided there is a subset $\{a, b, c\}$ of $\{x_1, x_2, \ldots, x_n\}$ with the property that any non-empty freely reduced word in a, b, c equal to 1 in G has a subword of length 2 contained in an element of r^* .

§1. Introduction

Collins [1] investigated the free subgroup of groups with presentations satisfying the C(4), T(4) conditions (see also Johnson [3]). He has shown that such a group G contains a free subgroup of rank two, except in some cases, which he lists explicitly. The exceptions are all two generator groups.

In [2] the T(4) condition was investigated graphically. Here we give a simple proof, in the spirit of [2], that if G is a C(4), T(4)-group which can be generated by three or more elements, then G contains a free subgroup of rank 2. In fact, we prove a slightly stronger result which will be stated explicitly later.

We will say that a presentation $\langle x; r \rangle$ is *slender* if each element of r is non-empty and cyclically reduced, and if for each $R \in r$, no cyclic permutation of R or R^{-1} , except R itself, belongs to r. We denote by r^* the set of all cyclic permutations of elements of r and their inverses. A word W is called a *piece* (relative to r) if there are distinct elements wu, wv of r^* . The presentation satisfies C(p) (p a positive integer) if no element of r^* is the product of less than p pieces. The *star graph* of the presentation $\langle x; r \rangle$ has vertex set $x \cup x^{-1}$, and $\{x^{\epsilon}, y^{\delta}\}$ ($x, y \in x, |\epsilon| = |\delta| = 1$ is an edge if and only if $y^{-\delta}x^{\epsilon}$ is a subword of some element of r^* . The presentation satisfies T(4) if and only if its star graph

Received May 28, 1986 and in revised form July 3, 1986

has no triangles (see [2] for details). Two slender presentations $\langle x_1, x_2, ..., x_n; r \rangle$, $\langle x_1, x_2, ..., x_n; s \rangle$ are said to be *equivalent* if there is a permutation α of $\{1, 2, ..., n\}$ such that $\theta(r)^* = s^*$ where θ is the automorphism of the free group on $x_1, x_2, ..., x_n$ defined by $x_i \mapsto x_{\alpha(i)}$.

THEOREM. Let $\langle x_i, x_2, ..., x_n; r \rangle$ $(n \ge 3)$ be a slender C(4), T(4) presentation not equivalent to a presentation $\langle x_1, x_2, ..., x_n; x_1Q_1, x_2Q_2, ..., x_{n-2}Q_{n-2}, s \rangle$ where $s \subseteq r$ and where each element of $\{Q_1, Q_2, ..., Q_{n-2}\} \cup s$ involves only x_{n-1}, x_n . Then the group defined by the presentation has a free subgroup of rank 2.

REMARK. Our proof actually shows that a slender T(4) presentation $\langle x_1, x_2, \ldots, x_n; r \rangle$ has a free subgroup of rank 2 provided there is a subset $\{a, b, c\}$ of $\{x_1, x_2, \ldots, x_n\}$ with the property that any non-empty freely reduced word in a, b, c equal to 1 in G has a subword of length 2 contained in an element of r^* . It will be seen (§2) that a presentation satisfying the hypotheses of our theorem has such a subset.

§2. Preliminaries

Let $\langle x_1, x_2, ..., x_n; r \rangle$ be a slender presentation satisfying the assumptions of the theorem. We want to show that there is a 3-element subset $\{a, b, c\}$ of $\{x_1, x_2, ..., x_n\}$ with the property:

(†) Any non-empty freely reduced word in a, b, c equal to 1 in G (a) has a subword of length 2 contained in an element of r^* .

LEMMA. A 3-element subset $\{a, b, c\}$ of $\{x_1, x_2, ..., x_n\}$ satisfies (†) except possibly if there is an element $R \in r$ where one of a, b, c occurs exactly once in R and in no other relator.

PROOF. Suppose there is a non-empty freely reduced word W in a, b, c equal to 1 in G but which does not have a subword of length 2 contained in r^* . Let M be a reduced Van Kampen diagram with boundary label W. By standard small cancellation theory (see [4] chapter V) M has a boundary region Δ (labelled by R say) such that Δ has at most two interior edges, $\partial \Delta \cap \partial M$ is a consecutive part of M, the label u on $\partial \Delta \cap \partial M$ is a subword of W. By assumption u has length 1. Since the label on the interior edges of Δ are pieces, the C(4) condition implies that u is not a piece. Thus u cannot occur in any relator except R. Also it occurs once in R because it cannot be part of a label of an interior edge of Δ .

Now suppose $\{x_1, x_2, x_3\}$ does not satisfy (†). Then by the Lemma we can assume (relabelling if necessary) that x_1 occurs once in some relator R_1 and in no

other relator. Some cyclic permutation of R_1^{\pm} will then have the form x_1Q_1 where x_1 does not occur in Q_1 . Now consider $\{x_2, x_3, x_4\}$, and so on. If we do not eventually find a subset satisfying (†) then we will have that $\langle x_1, x_2, \ldots, x_n; r \rangle$ is equivalent to a presentation

$$\langle x_1, x_2, \ldots, x_n; x_1Q_1, x_2Q_2, \ldots, x_{n-2}Q_{n-2}, s \rangle$$

where $s \subseteq r$ and the elements of $\{Q_1, Q_2, \ldots, Q_{n-2}\} \cup s$ involve only x_{n-1}, x_n which contradicts the assumption.

§3. Proof of the Theorem

Let $\{a, b, c\}$ be a subset of $\{x_1, x_2, ..., x_n\}$ satisfying (†) and consider the full subgraph $\Gamma(a, b, c)$ with the star graph of the presentation $\langle x_1, x_2, ..., x_n; r \rangle$ on the vertices $a, a^{-1}, b, b^{-1}, c, c^{-1}$. Let Ω_3 be the subgroup of the symmetric group on $\{a, b, c, a^{-1}, b^{-1}, c^{-1}\}$ generated by the elements $(xy)(x^{-1}y^{-1}), (xx^{-1})$ $(x, y \in \{a, b, c\})$. Then it is shown in [2] that, up to permutating the vertices by an element of Ω_3 , $\Gamma(a, b, c)$ is a subgraph of one of the following:

It therefore suffices to assume that $\Gamma(a, b, c)$ is a subgraph of one of the above.

Note that a word xy of length 2 (x, $y \in \{a, a^{-1}, b, b^{-1}, c, c^{-1}\}$) is a subword of an element of r^* if and only if $\{x^{-1}, y\}$ is an edge of $\Gamma(a, b, c)$.

Suppose $\Gamma(a, b, c)$ is a subgraph of the first graph. Then none of the words $c^{-1}b$, $b^{-1}a$, $c^{-1}a$, ba^{-1} , ca^{-1} , cb^{-1} occurs as a subword of an element of r^* . It follows that $a^{-1}b$, $a^{-1}c$ freely generate a subgroup of the group G defined by the presentation, for no non-empty freely reduced word in $a^{-1}b$, $a^{-1}c$ has (after freely reducing in terms of a, b, c) a subword of length 2 contained in an element of r^* . For the remaining cases similar arguments apply. For each case we list in Table 1 two words u, v in a, b, c, and we leave it to the reader to verify that if W(u, v) is a non-empty freely reduced word in u, v, then after freely reducing W(u, v) in terms of a, b, c, we obtain a non-empty word with no subword of length 2 contained in an element of r*.

TABLE 1		
Fig.	u	υ
2		a
3	bab^{-1}	а
4	cbc^{-1}	b
5	$ab^{-1}cba^{-1}$	cbc^{-1}
6	cbc^{-1}	aba ⁻ '
7	aba ⁻¹	cbc^{-1}

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. S. Pride, for his comments while writing this paper.

REFERENCES

1. D. J. Collins, Free subgroup of small cancellation groups, Proc. London Math. Soc. (31) 26 (1973), 193-206.

2. P. Hill, S. J. Pride and A. D. Vella, On the T(q)-conditions of small cancellation theory, Isr. J. Math. **52** (1985), 293–304.

3. D. L. Johnson, *Topics in the Theory of Group Presentation*, London Math. Soc. Lecture Note Series 42, Cambridge University Press, 1980.

4. R. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977.